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The field of asymmetric catalysis has produced remarkable results
in the area of the DietsAlder reaction} where a high degree of )J\/\ o><U\A
development has been achieved in both fundaméritadsd ><K/\

synthetic application.While chiral amines have recently been

applied as catalysts of DielsAlder reactions involving endland 7><r

enone8 as dienophiles, enantioselectivity during Dielslder \) 1R: 'Bu

cycloadditions is most often effected by chiral ligand-bearing metal S’ / 2 R1 Ph o
complexes. Catalysts for producing the cycloadducts in high ee’s R' 3R:Bn H°><Lv
inc!ude the Evan€,-symmetric bis(oxazoline)-metal c_ompleﬁes a MX,;: CU(OTf)2 ¢ MX,: Zn(OTf), 4
which have proven to be very successful whénoylimidesl b MX,: Mg(OTf); d MX,: Cu(SbFg),

are employed as dienophiles. It appears that these substrates haVE/ ure 1. N-Enoylimidesl typically used as achiral templates in enanti-
become the standard test for new catalyst development, while Otheroselectlve Diels-Alder reactions, and the alternative enotiesalong with
achiral templates have been much less investigaiethis context, the Lewis acid catalysts considered in this work.

application of the chiral relay concépto improve asymmetric
induction has been recently realiZDespite these advances, unmet
challenges remain with regard to reactivity and selectivity for - -
challenging substrates. For example, dienes other than the highly diene cat. T,°C t,h BOM- . dosexc® product yield, - ee

Table 1. Reaction of o'-hydroxy Enone 4 with Representative
Dienes Catalyzed by 1a and 1d2

reactive cyclopentadiene have been less documented and, with most ratio® %%

of the enantioselective methods so far developed, inferior results H

are obtained? a’-Hydroxy enonesl constitute attractive chelating D la =78 25 - >99:1 @2(%{) 99 >99

ketone dienophile¥t Chiral a’-hydroxy enones (ketols) in both 5

Lewis acid catalyzed and uncatalyzed diastereoselective -Biels H

Alder reactions were introduced by Masamif®ho showed that © la 25 2 - >991 @)?7{7 93 298
6

the internal hydrogen bond activation operating in these ketols is
sufficient for promoting their reaction with the highly reactive la 25 15 991 -
cyclopentadiene. Recently, within a broad project aimed at estab- /( la -20 30 >99:1 -

88 81
87 88

lishing the potential of ketols as carboxylic acid surrogates in the 1d -20 14 >99:1 - 7 85 94
context of diastereo- and enantioselecti@e-C bond forming 1d -20 20 >99:1 - 85 90°
transformations? our group has documented the Brgnsted acid-
. . S, la -20 20 - - OH 75 89
catalyzed Diels Alder reaction of chirabt'-hydroxy enone$? The I d 20 13 - ; 80 94
remarkable efficiency of thesg-hydroxy enones, even against less 8 .
. . . . . 1d -20 20 - - 90 90
reactive dienes, was interpreted on the basis of an intermolecular o
hydrogen bond network activation. While the above observations la 25 8 50:50 - H - nd
reveal some interesting features inherentc'tdnydroxy enones, to 1d 25 2 7624 - - nd
the best of our knowledge, the use of achicahydroxy enonedl 1d -10 15 88%12 -- 9 95 >99

as templates in enantioselective Dielder reactions has not been

reported yet. We envisaged that these templates may give rise to a Reactions conducted at 0.5 mmol scale in,Cll Molar ratio of enone:
dlene catalyst 1:5:0.%.Ratio of regio- orcis/transisomers, as applicable,
well ordered transition structures for high enantiocontrol provided yetermined by“C NMR. © Determined byC NMR. ¢ Enantiomeric excess

that: (a) upon combination with chiral Lewis acids, tight templates of the major regio- or diastereoisomer, as applicable, determined by HPLC.
as inlll 15 are generated and (b) there is a substantial energy n-d= not determined? Using 2 mol % of catalyst.
preference for the enone to adopt theis arrangement over the
stranst®

To evaluate this hypothesis, encheas prepared from 1-lithio-
1-methoxyallene and acetoffeand its reactivity against a variety
of dienes in the presence of chiral Lewis acids was examined, Table
1. Concordant with our expectations, cycloaddéctfrom the
reaction of4 with cyclopentadiene carried out in the presence of

catalystla (10 mol %), was indeed formed with essentially perfect
endoselectivity and enantioselectivity at78 °C. The less reactive
cyclohexadiene did not react withunder the same conditions but

at ambient temperature a clean reaction took place and, most
notably, almost complete selectivity was achieveddp:exaratio
>99:1, ee> 98%). Of major significance were the results with
more problematic dienes. With isoprene and catalysta 99:1

t Universidad del PaiVasco. regioisomeric ratio and an 81% ee were obtained, a result that could
#Universidad Phblica de Navarra. be improved to>99:1 regioisomeric ratio and 88% ee by perform-
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Table 2. Diels-Alder Reactions of g-substituted Enones 10-13 with

Supporting Information Available: Complete experimental pro-
Cyclopentadiene

cedures, determination of sterecisomeric mixtubesand*3C spectra,

o and HPLC chromatograms. This material is available free of charge
H @ (5 eq.), cat.(10 mol%) OH via the Internet at http://pubs.acs.org. See any current masthead page
Z "R ChaCl @ for ordering information and Web access instructions.
10-13 : “Rg7
References
enone R cat. T,°C t,h endoexo* product vyield, % ee, %° . . .
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2 Determined by*3C NMR. ® Determined by HPLCS Using 10 equiv.
of diene.
ing the reaction at-20 °C. The result was most impressive when
catalystld was used, which led te99:1 regioisomeric ratio and
94% ee'® Similar levels of selectivity were obtained with other
difficult dienes such as 2,3-dimethyl butadiene and piperylene,
catalystld again being the most effective. Remarkably, lowering
the catalyst loading from 10% to only 2% resulted in no significant
loss of either regioselectivity or enantioselectivity for isoprene and
2,3-dimethylbutadiene and reaction times were only slightly longer.

Observations that supported the 1,4-metal binding activation of
these enones were further attained in the reactiofissofbstituted
enones10—13'° with cyclopentadien&® As shown in Table 2,
selectivities and ee values remained high for ifb#ikyl ands-aryl
substituted enones, even at the high temperatures required for the
less reactive substrates. In addition, the reaction appears to be quite
regular regardless of the electreneutral, electron-rich or electron-
poor nature of aryl substituents.

The excellent enantioselectivity observed in these reactions is
also of particular interest since carbonyl addition and subsequent
diol cleavage provides ketone adducts sucli@&and 19 (eq 1),
formally derived from the DielsAlder reaction of alkyl vinyl
ketones. Similarly, treatment of addustand15 (eq 2) with cerium
ammonium nitrate (CAN) gave the corresponding carboxylic acids
20and21in high yields and ee’s* Moreover, in these transforma-
tions acetone is the only byproduct formed, an additional aspect of
the approach that is of practical interest.

o o}

18 (79%, 94%ee) 19 (87%, 94%ee)

1. MeLi or "BuLi
(94% ee) 2. (NH4)2Ce(NO3)s

Ph
5 (NHg)2Ce(NO3)s / / )
CO,H COH
20 (95%,>99%ee) 21 (85%, >99%ee)

In conclusion, we have documented a complementary approach
to enantiocontrol in DielsAlder reactions that is based upon an
efficient 1,4-metal binding complexation ia'-hydroxy enones.
Extension of this metal-binding principle to other enantioselective
transformations can be predicted and work in that direction is active
in our laboratories.
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